При гетерозиготном наследовании гены происходят от двух родительских клеток для размножения и присутствуют у животных, людей и растений. Существует несколько примеров гетерозиготных генов, включая полное доминирование, совместное доминирование и гетерозиготные мутации. Во всех диплоидных организмах, которые содержат два набора хромосом, термин гетерозиготный означает, что индивидуум, образованный из двух родительских клеток, имеет два разных аллеля для одного специфического признака. Хромосомы содержат аллели в качестве специфического признака ДНК или гена. Вы наследуете аллели от обоих родителей, в случае людей, половину от своей матери и половину от своего отца. То же самое происходит у животных и растений. Клетки содержат наборы из двух гомологичных хромосом, что означает, что наборы появляются в одинаковом положении для одного и того же признака на каждой паре хромосом. Гомологичные хромосомы имеют одинаковую генетическую структуру, но аллели могут различаться, чтобы определить, какие признаки выражены в клетке. Что такое гетерозиготная черта? Гетерозиготный признак - это когда два ряда хромосом находятся в одной области, поскольку аллели отличаются друг от друга. Один означает черту от матери, а другой - от отца, но оба не совпадают. Например, если у матери коричневые волосы, а у отца светлые, доминирующая черта одного из родителей будет контролировать черту или цвет волос ребенка.
Когда два аллеля отличаются по своим соответствующим хромосомам от каждого родителя, они могут иметь доминантные или рецессивные гены или признаки. Доминирующей чертой является та, которую вы можете увидеть или заметить, например, внешний вид, или это может быть черта, вызывающая привычку, например, грызть ногти. Гетерозиготный рецессивный признак в этом случае маскируется гетерозиготным доминантным признаком, поэтому он не будет рассматриваться как доминирующий признак. В случае, когда доминанта полностью маскирует рецессивную черту, это называется полным доминированием.
В случае неполного доминирования один гетерозиготный аллель является доминантным, а другой - рецессивным, однако доминирующий признак лишь частично маскирует рецессивный признак. Вместо этого создается другой фенотип, который представляет собой комбинацию фенотипов обоих аллелей. Например, если один родительский человек имеет темный оттенок кожи и темные волосы, а другой имеет очень светлую кожу и светлые волосы, случай неполного доминирования может быть, когда у ребенка средний тон кожи, который представляет собой смесь обоих родительские черты.
В случае совместного доминирования в генетике оба гетерозиготных аллеля полностью экспрессируются в фенотипе от обоих родителей. Это можно увидеть, изучив группы крови потомства. Если один из родителей имеет группу крови A, а другой родитель имеет группу крови B, ребенок будет иметь группу крови с доминированием AB. В этом случае каждый из двух различных типов крови полностью выражен и одинаково выражен, чтобы быть доминантным.
Гомозиготный по сути является противоположностью гетерозиготного. У человека с гомозиготным признаком есть аллели, которые очень похожи друг на друга. Гомозиготы производят только гомозиготное потомство. Потомство может быть гомозиготным доминантным, выраженным как RR, или они могут быть гомозиготным рецессивным, выраженным как rr для признака. Гомозиготные особи могут не иметь как рецессивных, так и доминантных признаков, выраженных как Rr. Как гетерозиготное, так и гомозиготное потомство могут родиться от гетерозиготы. В этом случае у потомства могут быть доминантные и рецессивные аллели, которые выражаются в полной доминантности, неполной доминантности или даже совладении. Что такое дигибридный крест в генетике? Дигибридный крест создается, когда два родительских организма отличаются по своим двум признакам. Родительские организмы имеют разные пары аллелей для каждого признака. У одного из родителей есть гомозиготные доминантные аллели, а у другого - противоположность, как у гетерозиготных рецессивов. Это делает каждого родителя полной противоположностью от другого. Все потомство, которое вырабатывается двумя родительскими организмами, являются гетерозиготными по всем специфическим признакам. Все потомки имеют гибридный генотип и выражают доминантные фенотипы для каждого признака. Например, рассмотрите дигибридный крест в семенах, где две изучаемые черты - форма и цвет семени. Одно растение является гомозиготным по доминирующим признакам формы и цвета, представленным как (YY) для желтого цвета семян и (RR) для круглой формы семян. Генотип (YYRR). Другое растение противоположно и имеет гомозиготные рецессивные черты, такие как зеленый цвет семян и морщины в форме семян, выраженные как (yyrr). Когда эти два растения скрещиваются, все результаты становятся гетерозиготными для желтого в качестве цвета семян и круглыми в виде формы или (YrRr). Это верно для первого потомства или поколения F1 всех гибридных скрещенных растений из тех же двух родительских растений. Поколение F2, которое присутствует, когда растения самоопыляются, является вторым поколением, и все растения имеют вариации формы и цвета семян. В этом примере около 9/16 растений имеют желтые семена с морщинистой формой. Приблизительно 3/16 получают зеленый цвет в качестве цвета семени и округлый как форму. Приблизительно 3/16 получают семена желтого цвета и морщинистой формы, а оставшиеся 1/16 получают семена зеленого цвета с морщинистой формой. В результате поколение F2 демонстрирует четыре фенотипа и девять генотипов. Что такое моногибридный крест в генетике? Моногибридный генетический крест сосредоточен вокруг только одного признака, который отличается у двух родительских растений. Оба родительских растения являются гомозиготными по изучаемому признаку, хотя имеют разные аллели для этих признаков. Один из родителей является гомозиготным рецессивным, а другой - гомозиготным доминантным по той же характеристике. Так же, как в дигибридном скрещивании растений, поколение F1 будет все гетерозиготным в моногибридном скрещивании. В поколении F1 наблюдается только доминантный фенотип. Но поколение F2 будет составлять 3/4 доминирующего фенотипа и 1/4 наблюдаемого рецессивного фенотипа.
Генетические мутации могут происходить в хромосомах, которые постоянно изменяют последовательность ДНК, поэтому она отличается от последовательности у большинства других людей. Мутации могут быть такими же большими, как сегмент хромосом с несколькими генами, или такими же маленькими, как одна пара аллелей. В мутации наследственности, мутация наследуется и остается с человеком в каждой клетке своего тела на протяжении всей своей жизни. Мутации происходят, когда яйцеклетка и сперматозоид объединяются, и оплодотворенная яйцеклетка получает ДНК от обоих родителей, у которых полученная ДНК имеет генетическую мутацию. В диплоидных организмах мутация, происходящая только в одном аллеле гена, является гетерозиготной мутацией.
Каждая клетка в организме человека зависит от тысяч белков, которые должны появляться в нужных областях, чтобы выполнять свою работу и способствовать здоровому развитию. Мутация гена может помешать правильному функционированию одного или нескольких белков, а также вызвать нарушение функционирования белка или его отсутствие в клетке. Эти вещи, которые совпадают с генетическими мутациями, могут нарушить нормальное развитие или вызвать заболевание в организме. Это часто называют генетическим заболеванием. В случае серьезных генетических мутаций эмбрион может даже не выжить достаточно долго, чтобы достичь рождения. Это происходит с генами, которые необходимы для развития. Очень серьезные генные мутации будут несовместимы с жизнью, поэтому эмбрион не доживет до рождения. Гены не вызывают заболевания, но генетическое нарушение может привести к тому, что ген не сможет функционировать должным образом. Если кто-то говорит, что у человека плохие гены, это на самом деле случай дефектного или мутировавшего гена. Каковы различные типы генных мутаций? Ваша последовательность ДНК может быть изменена семью различными способами, что приведет к мутации гена. Миссенс-мутация - это изменение одной базовой пары ДНК. Это приводит к замене одной аминокислоты на другую в белке гена. Нонсенс-мутация - это изменение пары оснований ДНК. Он не заменяет одну аминокислоту другой, но вместо этого последовательность ДНК будет преждевременно сигнализировать клетке о том, что она перестает производить белок, что приводит к укороченному белку, который может функционировать неправильно или вообще не функционировать. Мутации вставки изменяют количество оснований ДНК, потому что они добавляют дополнительный кусок ДНК, который не принадлежит. Это может привести к неправильной работе белка гена. Мутации удаления являются противоположностью мутации вставки, поскольку есть часть ДНК, которая удаляется. Делеции могут быть небольшими, если затронуты только несколько пар оснований, или они могут быть большими, когда весь ген или соседние гены удалены. Дублирующая мутация - это когда часть ДНК копирует себя один или несколько раз, что приводит к неправильному функционированию белка, полученного в результате мутации. Мутации смены кадров происходят, когда рамка считывания гена изменяется из-за потери или добавления изменений в основе ДНК. Рамки считывания содержат группы из трех оснований с каждым кодом для одной аминокислоты. Мутация сдвига кадров смещает группы из трех и изменяет коды аминокислот. Белок в результате этого действия обычно нефункциональный. Повторите мутации расширения, когда нуклеотиды повторяются несколько раз подряд. Это в основном увеличивает количество повторений короткой ДНК.
Составная гетерозигота возникает, когда есть два мутантных аллеля, по одному от каждого родителя, в парах генов в одном и том же месте. Оба аллеля имеют генетические мутации, но каждый аллель в паре имеет разные мутации. Это называется сложным гетерозиготом или генетическим соединением, которое включает обе пары аллелей в одной области хромосомы.
В качестве гетерозиготного примера, каждая собака несет набор из двух аллелей в одном месте на хромосоме по своим признакам. Чаще всего один является рецессивным, а другой - доминантным, и доминирующий цвет будет отображаться для окраса шерсти щенков как фенотип. Посмотрите на лабрадор ретриверов и их доминирующие цвета, где доминирующий цвет - черный, а рецессивный - шоколад. Доминирующие признаки выражены заглавными буквами, а рецессивные признаки выражены строчными буквами для генотипа. Например, собака с генотипом BB имеет два доминантных аллеля, и она будет экспрессировать только B, так как оба являются доминантными. Собака с Bb в качестве генотипа будет экспрессировать B, так как B является доминантным, а b рецессивным. Генотип bb, причем оба являются рецессивными, будет единственным генотипом, который выражает цвет b. | |
Просмотров: 14468 | |